Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Virus Genes ; 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594489

RESUMO

LesaNPV (Leucoma salicis nucleopolyhedrovirus) is an alphabaculovirus group Ib. Potentially, it can be an eco-friendly agent to control the white satin moth Leucoma salicis population. In this study, we have established the relationship between LesaNPV and other closely related alphabaculoviruses. Environmental samples of late instar of white satin moth collected in Poland infected with baculovirus have been homogenized, polyhedra were purified and subjected to scanning and transmission electron microscopy. Viral DNA was sequenced using the Illumina platform and the whole-genome sequence was established by de novo assembly of paired reads. Genome annotation and phylogenetic analyses were performed with the use of bioinformatics tools. The genome of LesaNPV is 132 549 bp long with 154 ORFs and 54.9% GC content. Whole-genome sequencing revealed deletion of dUTPase as well as ribonucleoside reductases small and large subunits region in LesaNPV genome compared to Dasychira pudibunda nucleopolyhedrovirus (DapuNPV) and Orgyia pseudotsugata multiple nucleopolyhedrovirus (OpMNPV) where this region is complete. Phylogenetic analysis of Baculoviridae family members showed that LesaNPV is less divergent from a common ancestor than closely related species DapuNPV and OpMNPV. This is interesting because their hosts do not occur in the same area. The baculoviruses described in this manuscript are probably isolates of one species and could be assigned to recently denominated species Alphabaculovirus orpseudotsugatae, historically originating from OpMNPV. This finding could have significant implications for the classification and understanding of the phylogeographical spread of baculoviruses.

2.
Int J Mol Sci ; 25(5)2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38474041

RESUMO

Dickeya solani, belonging to the Soft Rot Pectobacteriaceae, are aggressive necrotrophs, exhibiting both a wide geographic distribution and a wide host range that includes many angiosperm orders, both dicot and monocot plants, cultivated under all climatic conditions. Little is known about the infection strategies D. solani employs to infect hosts other than potato (Solanum tuberosum L.). Our earlier study identified D. solani Tn5 mutants induced exclusively by the presence of the weed host S. dulcamara. The current study assessed the identity and virulence contribution of the selected genes mutated by the Tn5 insertions and induced by the presence of S. dulcamara. These genes encode proteins with functions linked to polyketide antibiotics and polysaccharide synthesis, membrane transport, stress response, and sugar and amino acid metabolism. Eight of these genes, encoding UvrY (GacA), tRNA guanosine transglycosylase Tgt, LPS-related WbeA, capsular biosynthesis protein VpsM, DltB alanine export protein, glycosyltransferase, putative transcription regulator YheO/PAS domain-containing protein, and a hypothetical protein, were required for virulence on S. dulcamara plants. The implications of D. solani interaction with a weed host, S. dulcamara, are discussed.


Assuntos
Solanum tuberosum , Solanum , Solanum/genética , Dickeya/genética , Solanum tuberosum/genética , Enterobacteriaceae/genética , Loci Gênicos , Doenças das Plantas
3.
Viruses ; 15(9)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37766299

RESUMO

Influenza A viruses (IAV) are still a cause of concern for public health and veterinary services worldwide. With (-) RNA-segmented genome architecture, influenza viruses are prone to reassortment and can generate a great variety of strains, some capable of crossing interspecies barriers. Seasonal IAV strains continuously spread from humans to pigs, leading to multiple reassortation events with strains endemic to swine. Due to its high adaptability to humans, a reassortant strain based on "human-like" genes could potentially be a carrier of avian origin segments responsible for high virulence, and hence become the next pandemic strain with unseen pathogenicity. The rapid evolution of sequencing methods has provided a fast and cost-efficient way to assess the genetic diversity of IAV. In this study, we investigated the genetic diversity of swine influenza viruses (swIAVs) collected from Polish farms. A total of 376 samples were collected from 11 farms. The infection was confirmed in 112 cases. The isolates were subjected to next-generation sequencing (NGS), resulting in 93 full genome sequences. Phylogenetic analysis classified 59 isolates as genotype T (H1avN2g) and 34 isolates as genotype P (H1pdmN1pdm), all of which had an internal gene cassette (IGC) derived from the H1N1pdm09-like strain. These data are consistent with evolutionary trends in European swIAVs. The applied methodology proved to be useful in monitoring the genetic diversity of IAV at the human-animal interface.

4.
J Inherit Metab Dis ; 46(5): 916-930, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37395296

RESUMO

Until now, only a few studies have focused on the early onset of symptoms of alkaptonuria (AKU) in the pediatric population. This prospective, longitudinal study is a comprehensive approach to the assessment of children with recognized AKU during childhood. The study includes data from 32 visits of 13 patients (five males, eight females; age 4-17 years) with AKU. A clinical evaluation was performed with particular attention to eye, ear, and skin pigmentation, musculoskeletal complaints, magnetic resonance imaging (MRI), and ultrasound (US) imaging abnormalities. The cognitive functioning and adaptive abilities were examined. Molecular genetic analyses were performed. The most common symptoms observed were dark urine (13/13), followed by joint pain (6/13), and dark ear wax (6/13). In 4 of 13 patients the values obtained in the KOOS-child questionnaire were below the reference values. MRI and US did not show degenerative changes in knee cartilages. One child had nephrolithiasis. Almost half of the children with AKU (5/13) presented deficits in cognitive functioning and/or adaptive abilities. The most frequent HGD variants observed in the patients were c.481G>A (p.Gly161Arg) mutation and the c.240A>T (p.His80Gln) polymorphism. The newly described allele of the HGD gene (c.948G>T, p.Val316Phe) which is potentially pathogenic was identified.


Assuntos
Alcaptonúria , Criança , Masculino , Feminino , Humanos , Pré-Escolar , Adolescente , Alcaptonúria/diagnóstico , Alcaptonúria/genética , Alcaptonúria/patologia , Homogentisato 1,2-Dioxigenase/genética , Estudos Prospectivos , Estudos Longitudinais , Mutação
5.
Sci Rep ; 13(1): 7534, 2023 05 09.
Artigo em Inglês | MEDLINE | ID: mdl-37160956

RESUMO

Lytic bacteriophages able to infect and kill Dickeya spp. can be readily isolated from virtually all Dickeya spp. containing environments, yet little is known about the selective pressure those viruses exert on their hosts. Two spontaneous D. solani IPO 2222 mutants (0.8% of all obtained mutants), DsR34 and DsR207, resistant to infection caused by lytic phage vB_Dsol_D5 (ΦD5) were identified in this study that expressed a reduced ability to macerate potato tuber tissues compared to the wild-type, phage-susceptible D. solani IPO 2222 strain. Genome sequencing revealed that genes encoding: secretion protein HlyD (in mutant DsR34) and elongation factor Tu (EF-Tu) (in mutant DsR207) were altered in these strains. These mutations impacted the DsR34 and DsR207 proteomes. Features essential for the ecological success of these mutants in a plant environment, including their ability to use various carbon and nitrogen sources, production of plant cell wall degrading enzymes, ability to form biofilms, siderophore production, swimming and swarming motility and virulence in planta were assessed. Compared to the wild-type strain, D. solani IPO 2222, mutants DsR34 and DsR207 had a reduced ability to macerate chicory leaves and to colonize and cause symptoms in growing potato plants.


Assuntos
Bacteriófagos , Virulência/genética , Enterobacteriaceae , Mutação , Natação
6.
Clin Microbiol Infect ; 28(3): 451.e1-451.e4, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34920116

RESUMO

OBJECTIVES: This work aimed to analyse possible zoonotic spill-over of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We report the spill-over of mink-adapted SARS-CoV-2 from farmed mink to humans after adaptation that lasted at least 3 months. METHODS: Next-generation sequencing and a bioinformatic approach were applied to analyse the data. RESULTS: In an isolate obtained from an asymptomatic patient testing positive for SARS-CoV-2, we found four distinguishing mutations in the S gene that gave rise to the mink-adapted variant (G75V, M177T, Y453F, and C1247F) and others. CONCLUSIONS: Zoonotic spill-over of SARS-CoV-2 can occur from mink to human.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , COVID-19/veterinária , Fazendas , Humanos , Vison , SARS-CoV-2/genética , Zoonoses
7.
Euro Surveill ; 26(39)2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34596017

RESUMO

Routine genomic surveillance on samples from COVID-19 patients collected in Poland during summer 2021 revealed the emergence of a SARS-CoV-2 Delta variant with a large 872 nt deletion. This change, confirmed by Sanger and deep sequencing, causes complete loss of ORF7a, ORF7b, and ORF8 genes. The index case carrying the deletion is unknown. The standard pipeline for sequencing may mask this deletion with a long stretch of N's. Effects of this deletion on phenotype or immune evasion needs further study.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Polônia
8.
Mol Plant Microbe Interact ; 34(11): 1328-1333, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-34353114

RESUMO

Pectobacterium atrosepticum is a narrow-host-range, pectinolytic, plant-pathogenic bacterium causing blackleg of potato (Solanum tuberosum L.) worldwide. Till present, several P. atrosepticum genomes have been sequenced and characterized in detail; however, all of these genomes have come from P. atrosepticum isolates from plants grown in temperate zones, not from hosts cultivated under different climatic conditions. Herewith, we present the first complete, high-quality genome of the P. atrosepticum strain Green1 isolated from potato plants grown under a subarctic climate in Greenland. The genome of P. atrosepticum strain Green1 consists of one chromosome of 4,959,719 bp, with a GC content of 51% and no plasmids. The genome contains 4,531 annotated features, including 4,179 protein-coding genes, 22 ribosomal RNA genes, 70 transfer RNA genes, 8 noncoding RNA genes, 2 CRISPRs, and 126 pseudogenes. We believe that the information in this first high-quality, complete, closed genome of P. atrosepticum strains isolated from host plants grown in a subarctic agricultural region will provide resources for comparative genomic studies and for analyses targeting climatic adaptation and ecological fitness mechanisms present in P. atrosepticum.[Formula: see text] Copyright © 2021 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Pectobacterium , Solanum tuberosum , Groenlândia , Pectobacterium/genética , Doenças das Plantas
9.
Emerg Infect Dis ; 27(9): 2333-2339, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34423763

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the etiologic agent of coronavirus disease and has been spreading worldwide since December 2019. The virus can infect different animal species under experimental conditions, and mink on fur farms in Europe and other areas are susceptible to SARS-CoV-2 infection. We investigated SARS-CoV-2 infection in 91 mink from a farm in northern Poland. Using reverse transcription PCR, antigen detection, and next-generation sequencing, we confirmed that 15 animals were positive for SARS-CoV-2. We verified this finding by sequencing full viral genomes and confirmed a virus variant that has sporadic mutations through the full genome sequence in the spike protein (G75V and C1247F). We were unable to find other SARS-CoV-2 sequences simultaneously containing these 2 mutations. Country-scale monitoring by veterinary inspection should be implemented to detect SARS-CoV-2 in other mink farms.


Assuntos
COVID-19 , Vison , Animais , Fazendas , Humanos , Polônia/epidemiologia , SARS-CoV-2
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...